AN APPROXIMATE METHOD OF COMPUTING
HEAT TRANSFER IN GAS—ELECTRIC HEATERS

N. V. Diligenskii and L. I, Babenkova UDC 536.244

An approximate method of analytical computation of heat transfer in gas—electric heaters is
proposed. The results of analytical computation using the obtained formulas are compared
with the results of numerical solution and electrical simulation,

We consider the problem of heating of air during its forced flow in a tube carrying electric current.

In the formulation of the problem we assume that the process of heating occurs without heat exchange
with the surrounding medium, the temperature drop along the thickness of the wall is small and the return
flow of heat along the tube due to small temperature gradients along the length can be neglected.

Under these assumption the investigation of heat balance of a heater leads to the formulation of the
problem in the form of the following system:
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A complete solution of system (1)-(2) is very laborious and unsuitable for application and therefore
we do not give this solution here. Modern electrical heating processes are characterized by high values
of the velocity of the operating substance; therefore it is advisable to make use of this fact for simplifying
the mathematical models of heat transfer, Thus, for describing the heat transfer process in a preheater
at high speeds of the operating substance A. L. Iskra proposed a simpler mathematical model [1]. However
her solution does not have a very clear analytical form and requires numerical computations on a computer.
Experience in using the tables proposed in [1] showed that they do not offer the possibility of computing
the heat transfer of the initial segments of the heater and the initial instants of rapid transitional regimes.

We construct another approximate model of the heat transfer process for the case of high gas velo-
cities which are of greatest interest in practical computations.

System (1)-(2) can be written in the following matrix form introducing the initial and boundary condi-
tions into the equations:
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We put system (1)-(2) in a form which can be solved for each of the variables # and 6:
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The determinant of the system is
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The right hand sides E; and E, are respectively computed from the formulas
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In [2, 3] definitions of asymptotic forms of functionals have been introduced depending on parameters
using which one can construct different approximate descriptions for differential operators, By definition
we shall assume a linear differential operator with constant coefficients depending on the numerical para-
meters v, Np(D) (D is differentiation operator) the asymptotic form of operator Ly(D) for v — v
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where ¢{w) is a function from some basic function space.

In (5) thé equivalence relation can be taken in the weak sense of [3] as well strong [2] convergence.
On the basis of this representation it can be shown that the following representation is valid for our problem:
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Introducing the asymptotic representation (6) into (4) we write the following approximate system for
determining the solution:
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We consider the problem with the right hand side and the boundary conditions determined in quadra-
ture Fo, ¢{ = 0; we shall consider the solution also in this quadrature and seek this solution using Laplace
transform. Transforming Eqs. (7)-(8) in Fo with parameters p and in ¢ with parameter s, we obtain the
following algebraic system:

Pes(Cp + A& = (Cp + A)Ped, + A{Q + DB,

Pes(Cp+ A8 =(p + Pes + A) (@ + D6,) + APed,,
from which we get o
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Inverting (9)-(10) for Fo, ¢ = 0 we obtain
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Integrals (11)-(12) can be evaluated in closed form for a sufficiently wide class of functions Q(£, Fo),
For each particular case with constant power of the heat source Q = const the solution has the form
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For homogeneous boundary conditions we have

w
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Fig. 1. Variation of the maximum temperature of gas
(a) [1) computed from [1]; 2) from formula (15); 3) elec-
trical simulation] () [1) computed from [1]; 2) from
formula (16); 3) electrical simulation] in time. Tg,

Tt in °K; 7 in sec.
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The results of the computations using the analytical formulas (15)-(16) were compared with numerical
computations of [1] for two real technological regimes (first regime: I = 200 A, V=16V, G =10.2 -}03
kg/sec, W = 6.5 m/sec, P =17.9.10°N/m?,1=1.2 m, d = 12 mm, 6 = 0.5 mm, material of the tube EI437B;
second regime: I = 274 A, V =13.26,V, G = 105.10° kg/sec, w = 30.2 m/sec, P =40- 10° N/m?,1 = 1.2 m,

d =10 mm, 6 =1 mm, material of the tube Kh20N80T). The variation of the temperature of the gas and
the tube with time is shown in Fig. 1la, b for the first variant.

An analysis of the computations shows that the agreement between the results of computations using
formulas (15)~-(16) and the tables of [1] improves as the gas velocity w increases. For a gas velocity of
20.2 m/sec the difference between the results is no more than 6%.

For a more objective estimate of the efficiency of the mathematical models an electrical simulation
of the heat transfer process in the heater was done for the first regime. A more exact physical model was
used in the simulation (real velocity profiles of the flow and turbulent transfer and radial and axial return
flows of heat along the heater tubes were taken into consideration).

A comparison of the results of analytical computation and electrical simulation showed that for real
heat transfer regimes computations using approximate formulas (13)-(14) and (15)-(16) are entirely admis-

sible.
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The proposed approach for high-speed heaters provides results with an accuracy that is adequate for
engineering applications and greatly extends the range of problems permitting solution in a closed analyti-
cal form,

NOTATION

T is the temperature

Pe = wl/ag, Fo = agr /1%, Po = qVI*/Ag(Tyy—Te) are the Peclet, Fourier, and Pomerantsov numbers;

is the spatial coordinate;

is the time;

is the heat transfer coefficient;

is the thermal diffusivity;

is the specific heat;

is the thermal conductivity;

ay is the specific density of heat generation;

w is the velocity;

I, d, 6, n, s are the length, inner diameter, thickness, perimeter,
and area of the transverse cross section of the tube
respectively;

&(¢&), 6(Fo) are the Dirac's delta function;

Tm is the scale temperature;

I is the current intensity;

v is the voltage;

G

P
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is the gas flow rate;
is the gas pressure.

Subscripts

g is the gas;
t is the tube;
m is the medium,
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